11 research outputs found

    DADC: A Novel Duty-cycling Scheme for IEEE 802.15.4 Cluster-tree-based IoT Applications

    Full text link
    [EN] The IEEE 802.15.4 standard is one of the widely adopted specifications for realizing different applications of the Internet of Things. It defines several physical layer options and Medium Access Control (MAC) sublayer for devices with low-power operating at low data rates. As devices implementing this standard are primarily battery-powered, minimizing their power consumption is a significant concern. Duty-cycling is one such power conserving mechanism that allows a device to schedule its active and inactive radio periods effectively, thus preventing energy drain due to idle listening. The standard specifies two parameters, beacon order and superframe order, which define the active and inactive period of a device. However, it does not specify a duty-cycling scheme to adapt these parameters for varying network conditions. Existing works in this direction are either based on superframe occupation ratio or buffer/queue length of devices. In this article, the particular limitations of both the approaches mentioned above are presented. Later, a novel duty-cycling mechanism based on MAC parameters is proposed. Also, we analyze the role of synchronization schemes in achieving efficient duty-cycles in synchronized cluster-tree network topologies. A Markov model has also been developed for the MAC protocol to estimate the delay and energy consumption during frame transmission.This work is supported by Science and Engineering Research Board, Department of Science and Technology, Government of India under ECR 2016, Grant No. 2016/001651. This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia," "Subprograma Estatal de Generacion de Conocimiento," within the project under Grant No. TIN2017-84802-C2-1-P. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) Project ERANETMED3-227 SMARTWATIR.Choudhury, N.; Matam, R.; Mukherjee, M.; Lloret, J. (2021). DADC: A Novel Duty-cycling Scheme for IEEE 802.15.4 Cluster-tree-based IoT Applications. ACM Transactions on Internet Technology. 22(2). https://doi.org/10.1145/3409487S22

    LBS: A Beacon Synchronization Scheme With Higher Schedulability for IEEE 802.15. 4 Cluster-Tree-Based IoT Applications

    Full text link
    [EN] The IEEE 802.15.4 standard is one of the most widely used link layer technology for building Internet of Things (IoT). It specifies several physical layer options and MAC layer for meeting low-power and low-rate requirements of devices deployed in a network of IoT. The standard also specifies a synchronization scheme for devices connected in a star topology, operating in beacon-enabled (BE) mode using periodic beacons. The BE mode facilitates synchronization among devices for data transmission and is suitable for large networks to establish low duty-cycles. Absence of a such a scheme for a cluster-tree network has confined its application only to nonbeacon mode. The challenge here is to schedule beacon frame transmissions of multiple devices in a nonoverlapping manner to avoid beacon collisions. This paper tackles the problem of synchronization by proposing localized beacon synchronization (LBS) scheme, a distributed technique for beacon scheduling in cluster-tree network topologies. LBS uses 2-hop information and association order to compute beacon transmission offsets that better utilize the available time slots, incur fewer transmissions, and is highly scalable. Further, we analytically show that the schedulability of the proposed scheme is higher compared to other related schemes. In addition, we also address the important issue of resynchronization that has been ignored in all of the prior works. The proposed resynchronization mechanisms consider the interdependencies between synchronization and duty-cycling schemes and are shown to significantly lower the synchronization overhead when synchronization among devices is lost.This work was supported by the Science and Engineering Research Board, Department of Science and Technology, Govt. of India, under Grant ECR/2016/001651.Choudhury, N.; Matam, R.; Mukherjee, M.; Lloret, J. (2019). LBS: A Beacon Synchronization Scheme With Higher Schedulability for IEEE 802.15. 4 Cluster-Tree-Based IoT Applications. IEEE Internet of Things. 6(5):8883-8896. https://doi.org/10.1109/JIOT.2019.2924317888388966

    A Beacon and GTS Scheduling Scheme for IEEE 802.15.4 DSME Networks

    Full text link
    [EN] The IEEE 802.15.4 standard is one of the widely adopted networking specification for realizing different applications of Internet of Things (IoT). It defines several physical layer options and medium access control (MAC) sublayer protocols for low-power devices supporting low-data rates. One such MAC protocol is the deterministic and synchronous multichannel extension (DSME), which addresses the limitation on the maximum number of guaranteed time slots (GTSs) in 802.15.4-2011 MAC, and provides channel diversity to increase network robustness. However, beacon scheduling in peer-to-peer networks suffers from beacon slot collisions when two or more coordinators simultaneously compete for the same vacant beacon slot. In addition, the standard does not explore DSME-GTS scheduling (DGS) across multiple channels. This article addresses the beacon slot collision problem by proposing a nonconflicting beacon scheduling mechanism using association order (AO). Furthermore, a distributed multichannel DSME-GTS schedule is proposed that optimally assigns DSME-GTSs across different channels. The objective is to minimize the number of times-lots used while maximizing the usage of available channels. Through simulations, the proposed mechanisms' performance is analyzed in terms of energy efficiency, transmission overhead, scheduling efficiency, throughput, and latency and is shown to outperform the other existing schemes.Choudhury, N.; Matam, R.; Mukherjee, M.; Lloret, J. (2022). A Beacon and GTS Scheduling Scheme for IEEE 802.15.4 DSME Networks. IEEE Internet of Things. 9(7):5162-5172. https://doi.org/10.1109/JIOT.2021.3110866516251729

    A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes

    Full text link
    [EN] The IEEE 802.15.4 standard is one of the widely adopted networking specification for Internet of Things (IoT). It defines several physical layer (PHY) options and medium access control (MAC) sub-layer protocols for interconnection of constrained wireless devices. These devices are usually battery-powered and need to support requirements like low-power consumption and low-data rates. The standard has been revised twice to incorporate new PHY layers and improvements learned from implementations. Research in this direction has been primarily centered around improving the energy consumption of devices. Recently, to meet specific Quality-of-Service (QoS) requirements of different industrial applications, the IEEE 802.15.4e amendment was released that focuses on improving reliability, robustness and latency. In this paper, we carry out a performance-to-cost analysis of Deterministic and Synchronous Multi-channel Extension (DSME) and Time-slotted Channel Hopping (TSCH) MAC modes of IEEE 802.15.4e with 802.15.4 MAC protocol to analyze the trade-off of choosing a particular MAC mode over others. The parameters considered for performance are throughput and latency, and the cost is quantified in terms of energy. A Markov model has been developed for TSCH MAC mode to compare its energy costs with 802.15.4 MAC. Finally, we present the applicability of different MAC modes to different application scenarios.This work was supported in part by the SERB, DST, Government of India under Grant ECRA/2016/001651.Choudhury, N.; Matam, R.; Mukherjee, M.; Lloret, J. (2020). A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes. IEEE Access. 8:41936-41950. https://doi.org/10.1109/ACCESS.2020.2976654S4193641950

    NCHR: A Nonthreshold-Based Cluster-Head Rotation Scheme for IEEE 802.15.4 Cluster-Tree Networks

    Full text link
    [EN] The IEEE 802.15.4 standard specifies two network topologies: 1) star and 2) cluster tree. A cluster-tree network comprises of multiple clusters that allow the network to scale by connecting devices over multiple wireless hops. The role of a cluster head (CH) is to aggregate data from all devices in the cluster and then transmit it to the overall personal area network (PAN) coordinator. This specific role of CH needs to be rotated among multiple coordinators in the cluster to prevent it from energy drain out. Prior works on CH rotation are either based on threshold energy levels or rely on periodic rotation. Both approaches have their respective limitations and, at times, result in unnecessary CH rotations or nonoptimal selection of CH. To address this, we propose a nonthreshold CH rotation scheme (NCHR), which incurs minimal rotation overhead. It supports topological changes, node heterogeneity, and can also handle CH failures. Through simulations and hardware implementation, the performance of the proposed NCHR scheme is analyzed in terms of network lifetime, CH rotation overhead, and the number of CH rotations. It is shown that the proposed scheme boosts network lifetime, incurs less rotation overhead, and needs fewer CH rotations compared to other related schemes.This work was supported in part by the Science and Engineering Research Board, Department of Science and Technology, Government of India through ECR, 2016 under Grant 2016/001651; in part by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the Project under Grant TIN2017-84802-C2-1-P; and in part by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET Joint Activities and Beyond) Project ERANETMED3-227 SMARTWATIR.Choudhury, N.; Matam, R.; Mukherjee, M.; Lloret, J.; Kalaimannan, E. (2021). NCHR: A Nonthreshold-Based Cluster-Head Rotation Scheme for IEEE 802.15.4 Cluster-Tree Networks. IEEE Internet of Things. 8(1):168-178. https://doi.org/10.1109/JIOT.2020.30033201681788

    Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models

    Full text link
    Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed solution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of Zion platform, namely ZionEX. We demonstrate the capability to train very large DLRMs with up to 12 Trillion parameters and show that we can attain 40X speedup in terms of time to solution over previous systems. We achieve this by (i) designing the ZionEX platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments

    Secure Multicast Routing Algorithm for Wireless Mesh Networks

    No full text
    Multicast is an indispensable communication technique in wireless mesh network (WMN). Many applications in WMN including multicast TV, audio and video conferencing, and multiplayer social gaming use multicast transmission. On the other hand, security in multicast transmissions is crucial, without which the network services are significantly disrupted. Existing secure routing protocols that address different active attacks are still vulnerable due to subtle nature of flaws in protocol design. Moreover, existing secure routing protocols assume that adversarial nodes cannot share an out-of-band communication channel which rules out the possibility of wormhole attack. In this paper, we propose SEMRAW (SEcure Multicast Routing Algorithm for Wireless mesh network) that is resistant against all known active threats including wormhole attack. SEMRAW employs digital signatures to prevent a malicious node from gaining illegitimate access to the message contents. Security of SEMRAW is evaluated using the simulation paradigm approach

    Security and Privacy in Fog Computing: Challenges

    No full text
    open access articleFog computing paradigm extends the storage, networking, and computing facilities of the cloud computing toward the edge of the networks while offloading the cloud data centers and reducing service latency to the end users. However, the characteristics of fog computing arise new security and privacy challenges. The existing security and privacy measurements for cloud computing cannot be directly applied to the fog computing due to its features, such as mobility, heterogeneity, and large-scale geo-distribution. This paper provides an overview of existing security and privacy concerns, particularly for the fog computing. Afterward, this survey highlights ongoing research effort, open challenges, and research trends in privacy and security issues for fog computing
    corecore